Search results for "Lp space"

showing 10 items of 58 documents

Two-dimensional Banach spaces with polynomial numerical index zero

2009

We study two-dimensional Banach spaces with polynomial numerical indices equal to zero.

/dk/atira/pure/subjectarea/asjc/2600/2608/dk/atira/pure/subjectarea/asjc/2600/2607Eberlein–Šmulian theoremBanach manifoldFinite-rank operatorPolynomialMatrix polynomialFOS: MathematicsDiscrete Mathematics and Combinatorics/dk/atira/pure/subjectarea/asjc/2600/2602C0-semigroupLp spaceMathematicsMathematics::Functional AnalysisNumerical AnalysisBanach spaceAlgebra and Number TheoryMathematical analysisFunctional Analysis (math.FA)Mathematics - Functional Analysis46B04 (Primary) 46B20 46G25 47A12 (Secondary)Polynomial numerical indexInterpolation space/dk/atira/pure/subjectarea/asjc/2600/2612Geometry and TopologyNumerical rangeMonic polynomialLinear Algebra and its Applications
researchProduct

Beyond frames: Semi-frames and reproducing pairs

2017

Frames are nowadays a standard tool in many areas of mathematics, physics, and engineering. However, there are situations where it is difficult, even impossible, to design an appropriate frame. Thus there is room for generalizations, obtained by relaxing the constraints. A first case is that of semi-frames, in which one frame bound only is satisfied. Accordingly, one has to distinguish between upper and lower semi-frames. We will summarize this construction. Even more, one may get rid of both bounds, but then one needs two basic functions and one is led to the notion of reproducing pair. It turns out that every reproducing pair generates two Hilbert spaces, conjugate dual of each other. We …

AlgebraInner product spacesymbols.namesakeAreas of mathematicsLattice (order)Hilbert spacesymbolsRigged Hilbert spaceLp space
researchProduct

Topological Dual Systems for Spaces of Vector Measure p-Integrable Functions

2016

[EN] We show a Dvoretzky-Rogers type theorem for the adapted version of the q-summing operators to the topology of the convergence of the vector valued integrals on Banach function spaces. In the pursuit of this objective we prove that the mere summability of the identity map does not guarantee that the space has to be finite dimensional, contrary to the classical case. Some local compactness assumptions on the unit balls are required. Our results open the door to new convergence theorems and tools regarding summability of series of integrable functions and approximation in function spaces, since we may find infinite dimensional spaces in which convergence of the integrals, our vector value…

Article Subject0211 other engineering and technologies02 engineering and technologyTopologyComputer Science::Digital Libraries01 natural sciencesTopological vector spaceVector measureLocally convex topological vector spaceUnconditional convergenceIntegrable function0101 mathematicsLp spaceCompact convergenceMathematicsPointwise convergence021103 operations researchWeak convergenceTopological duallcsh:Mathematics010102 general mathematicslcsh:QA1-939AlgebraComputer Science::Mathematical SoftwareMATEMATICA APLICADAModes of convergenceAnalysis
researchProduct

A characterization of Hajłasz–Sobolev and Triebel–Lizorkin spaces via grand Littlewood–Paley functions

2010

Abstract In this paper, we establish the equivalence between the Hajlasz–Sobolev spaces or classical Triebel–Lizorkin spaces and a class of grand Triebel–Lizorkin spaces on Euclidean spaces and also on metric spaces that are both doubling and reverse doubling. In particular, when p ∈ ( n / ( n + 1 ) , ∞ ) , we give a new characterization of the Hajlasz–Sobolev spaces M ˙ 1 , p ( R n ) via a grand Littlewood–Paley function.

Calderón reproducing formulaMathematics::Functional AnalysisPure mathematicsTopological tensor product010102 general mathematicsMathematical analysisMathematics::Classical Analysis and ODEsTriebel–Lizorkin spaceTriebel–Lizorkin space01 natural sciences010101 applied mathematicsUniform continuityFréchet spaceSobolev spacesInterpolation spaceBesov spaceBirnbaum–Orlicz space0101 mathematicsLp spaceAnalysisMathematicsJournal of Functional Analysis
researchProduct

The Bohr Radius of a Banach Space

2009

Following the scalar-valued case considered by Djakow and Ramanujan (A remark on Bohr’s theorem and its generalizations 14:175–178, 2000) we introduce, for each complex Banach space X and each \(1\le p0\). We study the p-Bohr radius of the Lebesgue spaces \(L^q(\mu )\) for different values of p and q. In particular we show that \(r_p(L^q(\mu ))=0\) whenever \(p<2\) and \(dim(L^q(\mu ))\ge 2\) and \(r_p(L^q(\mu ))=1\) whenever \(p\ge 2\) and \(p'\le q\le p\). We also provide some lower estimates for \(r_2(L^q(\mu ))\) for the values \(1\le q<2\).

Combinatorics010102 general mathematicsMathematical analysisBanach space010103 numerical & computational mathematics0101 mathematicsAlgebra over a fieldLp space01 natural sciencesBohr radiusMathematics
researchProduct

Stochastic Processes on Ends of Tree and Dirichlet Forms

2016

We present main ideas and compare two constructions of stochastic processes on the ends (leaves) of the trees with varying numbers of edges at the nods. In one of them the trees are represented by spaces of numerical sequences and the processes are obtained by solving a class of Chapman-Kolmogorov Equations. In the other the trees are described by the set of nodes and edges. To each node there is naturally associated a finite dimensional function space and the Dirichlet form on it. Having a class of Dirichlet forms at the nodes one can under certain conditions build a Dirichlet form on L2 space of funcions on the ends of the trees. We show that the state spaces of two approaches are homeomo…

CombinatoricsClass (set theory)symbols.namesakeDirichlet formStochastic processFunction spacesymbolsState (functional analysis)Tree (set theory)Lp spaceDirichlet distributionMathematics
researchProduct

Remarks on the semivariation of vector measures with respect to Banach spaces.

2007

Suppose that and . It is shown that any Lp(µ)-valued measure has finite L2(v)-semivariation with respect to the tensor norm for 1 ≤ p &lt; ∞ and finite Lq(v)-semivariation with respect to the tensor norm whenever either q = 2 and 1 ≤ p ≤ 2 or q &gt; max{p, 2}. However there exist measures with infinite Lq-semivariation with respect to the tensor norm for any 1 ≤ q &lt; 2. It is also shown that the measure m (A) = χA has infinite Lq-semivariation with respect to the tensor norm if q &lt; p.

CombinatoricsDiscrete mathematicsGeneral MathematicsNorm (mathematics)Locally convex topological vector spaceComputingMethodologies_DOCUMENTANDTEXTPROCESSINGBanach spaceInterpolation spaceUniformly convex spaceBanach manifoldLp spaceNormed vector spaceMathematicsBulletin of the Australian Mathematical Society
researchProduct

Dissipative operators and differential equations on Banach spaces

1991

If we consider the initial value problem Inline Equation $$x'(t) = f(t,x(t)),{\text{ }}x(0) = {x_0}$$ on the real line, it is well known that one—sided bounds like Inline Equation $$\left[ {f(t,x) - f\left( {t,y} \right)} \right]\left( {x - {\text{y}}} \right) \leqslant \omega {\left( {x - y} \right)^2}$$ give much better information about the behaviour of solutions than the Lipschitz- type estimates Inline Equation $$ \left| {f\left( {t,x} \right) - f\left( {t,y} \right)} \right| \leqslant L\left| {x - y} \right|,$$ because ω, unlike L, may be negative.

CombinatoricsPhysicsFunctional analysisNuclear operatorBanach spaceDissipative operatorType (model theory)Operator theoryLp spaceC0-semigroup
researchProduct

On the Euler-Lagrange inequality of a convex variational integral in Orlicz spaces

1987

Convex analysisInequalitymedia_common.quotation_subjectMathematical analysisRegular polygonLinear matrix inequalityMinkowski inequalityGeneral Earth and Planetary SciencesApplied mathematicsBirnbaum–Orlicz spaceLp spaceJensen's inequalityGeneral Environmental Sciencemedia_commonMathematicsBanach Center Publications
researchProduct

A note on the Banach space of preregular maps

2011

The aim of this paper is to give simple proofs for Jeurnink's characterizations of preregular maps in terms of Θ-maps acting between Banach lattices. For Banach lattices E and F, we achieve our goal by considering the space Lβ(E, F) of all those linear maps T: E → F for which there exists a constant K such that {double pipe}Vn i=1 {pipe}Txi{pipe} ≤ K {double pipe}Vn i=1{pipe}xi for all finite sequences x1, ..., xn e{open}E. We show that, if Lβ(E; F), and the spaces L Θ (E; F) of Θ -map and Lpr(E; F) of preregular maps are respectively endowed with their canonical norms, then they are identical Banach spaces

Discrete mathematicsBanach lattice preregular operator regular operator.Mathematics (miscellaneous)Approximation propertySettore MAT/05 - Analisi MatematicaEberlein–Šmulian theoremInfinite-dimensional vector functionInterpolation spaceFinite-rank operatorBanach manifoldC0-semigroupLp spaceMathematicsQuaestiones Mathematicae
researchProduct